

LAZR config

The LAZR config system is typically used to manage process configuration.
Process configuration is for saying how things change when we run systems on
different machines, or under different circumstances.

This system uses ini-like file format of section, keys, and values. The
config file supports inheritance to minimize duplication of information across
files. The format supports schema validation.

ConfigSchema

A schema is loaded by instantiating the ConfigSchema class with the path to a
configuration file. The schema is explicitly derived from the information in
the configuration file.

>>> from pkg_resources import resource_string
>>> raw_schema = resource_string('lazr.config.tests.testdata', 'base.conf')

The config file contains sections enclosed in square brackets
(e.g. [section]). The section name may be divided into major and minor
categories using a dot (.). Beneath each section is a list of key-value
pairs, separated by a colon (:).

Multiple sections with the same major category may have their keys defined in
another section that appends the .template suffix to the category name.

A section with .optional suffix is not required. Lines that start with a
hash (#) are comments.

>>> from pkg_resources import resource_string
>>> raw_schema = resource_string('lazr.config.tests.testdata', 'base.conf')
>>> print(raw_schema.decode('utf-8'))
This section defines required keys and default values.
[section_1]
key1: foo
key2: bar and baz
key3: Launchpad rocks
key4: Fc;k yeah!
key5:
This section is required, and it defines all the keys for its category.
[section-2.app-b]
key1: True
This section is optional; it uses the keys defined
by section_3.template.
[section_3.app_a.optional]
This is a required section whose keys are defined by section_3.template
and it defines a new key.
[section_3.app_b]
key2: changed
key3: unique
These sections define a common set of required keys and default values.
[section_3.template]
key1: 17
key2: 3.1415
This section is optional.
[section-5.optional]
key1: something
This section has a name similar to a category.
[section_33]
key1: fnord
key2: multiline value 1
 multiline value 2

To create the schema, provide a file name.

>>> from lazr.config import ConfigSchema
>>> from lazr.config.interfaces import IConfigSchema
>>> from pkg_resources import resource_filename
>>> from zope.interface.verify import verifyObject
>>> base_conf = resource_filename(
... 'lazr.config.tests.testdata', 'base.conf')
>>> schema = ConfigSchema(base_conf)
>>> verifyObject(IConfigSchema, schema)
True

The schema has a name and a file name.

>>> print(schema.name)
base.conf
>>> print('file:', schema.filename)
file: ...lazr/config/tests/testdata/base.conf

If you provide an optional file-like object as a second argument to the
constructor, that is used instead of opening the named file implicitly.

>>> with open(base_conf, 'r') as file_object:
... other_schema = ConfigSchema('/does/not/exist.conf', file_object)
>>> verifyObject(IConfigSchema, other_schema)
True

For such schemas, the file name is taken from the first argument.

>>> print(other_schema.name)
exist.conf
>>> print(other_schema.filename)
/does/not/exist.conf

A schema is made up of multiple SchemaSections. They can be iterated
over in a loop as needed.

>>> from operator import attrgetter
>>> for section_schema in sorted(schema, key=attrgetter('name')):
... print(section_schema.name)
section-2.app-b
section-5
section_1
section_3.app_a
section_3.app_b
section_33

>>> for section_schema in sorted(other_schema, key=attrgetter('name')):
... print(section_schema.name)
section-2.app-b
section-5
section_1
section_3.app_a
section_3.app_b
section_33

You can check if the schema contains a section name, and that can be
used to access the SchemaSection as a subscript.

>>> 'section_1' in schema
True
>>> 'section-4' in schema
False

A SectionSchema can be retrieved from the schema using the [] operator.

>>> section_schema_1 = schema['section_1']
>>> print(section_schema_1.name)
section_1

Processes often require resources like databases or virtual hosts that have a
common category of keys. The list of all category names can be retrieved via
the categories attribute.

>>> for name in schema.category_names:
... print(name)
section-2
section_3

The list of SchemaSections that share common category can be retrieved
using getByCategory().

>>> all_section_3 = schema.getByCategory('section_3')
>>> for section_schema in sorted(all_section_3, key=attrgetter('name')):
... print(section_schema.name)
section_3.app_a
section_3.app_b

You can pass a default argument to getByCategory() to avoid the exception.

>>> missing = object()
>>> schema.getByCategory('non-section', missing) is missing
True

SchemaSection

A SchemaSection behaves similar to a dictionary. It has keys and values.

>>> from lazr.config.interfaces import ISectionSchema
>>> section_schema_1 = schema['section_1']
>>> verifyObject(ISectionSchema, section_schema_1)
True

Each SchemaSection has a name.

>>> print(section_schema_1.name)
section_1

A SchemaSection can return a 2-tuple of its category name and specific name
parts.

>>> for name in schema['section_3.app_b'].category_and_section_names:
... print(name)
section_3
app_b

The category name will be None if the SchemaSection’s name does not
contain a category.

>>> for name in section_schema_1.category_and_section_names:
... print(name)
None
section_1

Optional sections have the optional attribute set to True:

>>> section_schema_1.optional
False
>>> schema['section_3.app_a'].optional
True

A key can be verified to be in a section.

>>> 'key1' in section_schema_1
True
>>> 'nonkey' in section_schema_1
False

A key can be accessed directly using as a subscript of the SchemaSection. The
value is always a string.

>>> print(section_schema_1['key3'])
Launchpad rocks
>>> section_schema_1['key5']
''

An error is raised if a non-existent key is accessed.

>>> section_schema_1['not-exist']
Traceback (most recent call last):
 ...
KeyError: ...

In the conf file, [section_1] is a default section that defines keys and
values. The values specified in the section schema will be used as default
values if not overridden in the configuration. In the case of key5, the key
had no explicit value, so the value is an empty string.

>>> for key in sorted(section_schema_1):
... print(key, ':', section_schema_1[key])
key1 : foo
key2 : bar and baz
key3 : Launchpad rocks
key4 : Fc;k yeah!
key5 :

In the conf file [section_3.template] defines a common set of keys and
default values for [section_3.app_a] and [section_3.app_b]. When a
section defines different keys and default values from the template, the new
data overlays the template data. This is the case for section
[section_3.app_b].

>>> for section_schema in sorted(all_section_3, key=attrgetter('name')):
... print(section_schema.name)
... for key in sorted(section_schema):
... print(key, ':', section_schema[key])
section_3.app_a
key1 : 17
key2 : 3.1415
section_3.app_b
key1 : 17
key2 : changed
key3 : unique

ConfigSchema validation

The schema parser is self-validating. It checks that the character encoding
is ASCII, and that the data is not ambiguous or self-contradicting. Keys must
exist inside sections and section names may not be defined twice. Sections
may belong to only one category, and only letters, numbers, dots and dashes
may be present in section names.

IConfigLoader

ConfigSchema implements the two methods in the IConfigLoader interface. A
Config is created by a schema using either the load() or loadFile()
methods to return a Config instance.

>>> from lazr.config.interfaces import IConfigLoader
>>> verifyObject(IConfigLoader, schema)
True

The load() method accepts a filename.

>>> local_conf = resource_filename(
... 'lazr.config.tests.testdata', 'local.conf')
>>> config = schema.load(local_conf)

The loadFile() method accepts a file-like object and an optional filename
keyword argument. The filename argument must be passed if the file-like
object does not have a name attribute.

>>> try:
... from io import StringIO
... except ImportError:
... # Python 2
... from StringIO import StringIO
>>> bad_data = ("""
... [meta]
... metakey: unsupported
... [unknown-section]
... key1 = value1
... [section_1]
... keyn: unknown key
... key1: bad character in caf\xc3)
... [section_3.template]
... key1: schema suffixes are not permitted""")
>>> bad_config = schema.loadFile(
... StringIO(bad_data), 'bad conf')

Config

The config represents the local configuration of the process on a system. It
is validated with a schema. It extends the schema, or other conf files, to
define the specific differences from the extended files that are required to
run the local processes.

The object returned by load() provides both the IConfigData and
IStackableConfig interfaces. IConfigData is for read-only access to
the configuration data. A process configuration is made up of a stack of
different IConfigData. The IStackableConfig interface provides the
methods used to manipulate that stack of configuration overlays.

>>> from lazr.config.interfaces import IConfigData, IStackableConfig
>>> verifyObject(IConfigData, config)
True
>>> verifyObject(IStackableConfig, config)
True

Like the schema file, the conf file is made up of sections with keys. The
sections may belong to a category. Unlike the schema file, it does not have
template or optional sections. The [meta] section has the extends key
that declares that this conf extends shared.conf.

>>> with open(local_conf, 'rt') as local_file:
... raw_conf = local_file.read()
>>> print(raw_conf)
[meta]
extends: shared.conf
Localize a key for section_1.
[section_1]
key5: local value
Accept the default values for the optional section-5.
[section-5]

The .master section allows admins to define configurations for an
arbitrary number of processes. If the schema defines .master sections,
then the conf file can contain sections that extend the .master section.
These are like categories with templates except that the section names
extending .master need not be named in the schema file.

>>> master_schema_conf = resource_filename(
... 'lazr.config.tests.testdata', 'master.conf')
>>> master_local_conf = resource_filename(
... 'lazr.config.tests.testdata', 'master-local.conf')
>>> master_schema = ConfigSchema(master_schema_conf)
>>> sections = master_schema.getByCategory('thing')
>>> for name in sorted(section.name for section in sections):
... print(name)
thing.master
>>> master_conf = master_schema.load(master_local_conf)
>>> sections = master_conf.getByCategory('thing')
>>> for name in sorted(section.name for section in sections):
... print(name)
thing.one
thing.two
>>> for name in sorted(section.foo for section in sections):
... print(name)
1
2
>>> print(master_conf.thing.one.name)
thing.one

The shared.conf file derives the keys and default values from the schema.
This config was loaded before local.conf because its sections and values
are required to be in place before local.conf applies its changes.

>>> shared_config = resource_filename(
... 'lazr.config.tests.testdata', 'shared.conf')
>>> with open(shared_config, 'rt') as shared_file:
... raw_conf = shared_file.read()
>>> print(raw_conf)
The schema is defined by base.conf.
Localize a key for section_1.
[section_1]
key2: sharing is fun
key5: shared value

The config that was loaded has name and filename attributes to
identify the configuration.

>>> print(config.name)
local.conf
>>> print('file:', config.filename)
file: ...lazr/config/tests/testdata/local.conf

The config can access the schema via the schema property.

>>> print(config.schema.name)
base.conf
>>> config.schema is schema
True

A config is made up of multiple Sections like the schema. They can be
iterated over in a loop as needed. This config inherited several sections
defined in schema. Note that the meta section is not present because it
pertains to the config system, not to the processes being configured.

>>> for section in sorted(config, key=attrgetter('name')):
... print(section.name)
section-2.app-b
section-5
section_1
section_3.app_b
section_33

You can check if a section name is in a config.

>>> 'section_1' in config
True
>>> 'bad-section' in config
False

Optional SchemaSections are not inherited by the config. A config file must
declare all optional sections. Including the section heading is enough to
inherit the section and its keys. The config file may localize the keys by
declaring them too. The local.conf file includes section-5, but not
section_3.app_a.

>>> 'section_3.app_a' in config
False
>>> 'section_3.app_a' in config.schema
True
>>> config.schema['section_3.app_a'].optional
True
>>> 'section-5' in config
True
>>> 'section-5' in config.schema
True
>>> config.schema['section-5'].optional
True

A Section can be accessed using subscript notation. Accessing a section that
does not exist will raise a NoSectionError. NoSectionError is raised for a
undeclared optional sections too.

>>> section_1 = config['section_1']
>>> section_1.name in config
True

Config supports category access like Schema does. The list of categories are
returned by the category_names property.

>>> for name in sorted(config.category_names):
... print(name)
section-2
section_3

All the sections that belong to a category can be retrieved using the
getByCategory() method.

>>> for section in config.getByCategory('section_3'):
... print(section_schema.name)
section_3.app_b

Passing a non-existent category_name to the method will raise a
NoCategoryError. As with schemas, you can pass a default argument to
getByCategory() to avoid the exception.

>>> missing = object()
>>> config.getByCategory('non-section', missing) is missing
True

Section

A Section behaves similar to a dictionary. It has keys and values. It
supports some specialize access methods and properties for working with the
values. Each Section has a name.

>>> from lazr.config.interfaces import ISection
>>> verifyObject(ISection, section_1)
True
>>> print(section_1.name)
section_1

Like SectionSchemas, sections can return a 2-tuple of their category name and
specific name parts. The category name will be None if the section’s name
does not contain a category.

>>> for name in config['section_3.app_b'].category_and_section_names:
... print(name)
section_3
app_b
>>> for name in section_1.category_and_section_names:
... print(name)
None
section_1

The Section’s type is the same type as the ConfigSchema.section_factory.

>>> section_1
<lazr.config...Section object at ...>
>>> config.schema.section_factory
<class 'lazr.config...Section'>

A key can be verified to be in a Section.

>>> 'key1' in section_1
True
>>> 'nonkey' in section_1
False

A key can be accessed directly using as a subscript of the Section.
The value is always a string.

>>> print(section_1['key3'])
Launchpad rocks
>>> print(section_1['key5'])
local value

An error is raised if a non-existent key is accessed via a subscript.

>>> section_1['not-exist']
Traceback (most recent call last):
 ...
KeyError: ...

The Section keys can be iterated over. The section has all the keys from the
SectionSchema. The values came form the schema’s default values, then the
values from shared.conf were applied, and lastly, the values from
local.conf were applied. The schema provided the values of key1,
key3, and key4. shared.conf provided the value of key2
. local.conf provided key5. While shared.conf provided a
key5, local.conf takes precedence.

>>> for key in sorted(section_1):
... print(key, ':', section_1[key])
key1 : foo
key2 : sharing is fun
key3 : Launchpad rocks
key4 : Fc;k yeah!
key5 : local value
>>> section_1.schema['key5']
''

The schema provided mandatory sections and default values to the config. So
while the config file did not declare all the sections, they are present. In
the case of section_3.app_b, its keys were defined in a template section.

>>> for key in sorted(config['section_3.app_b']):
... print(key, ':', config['section_3.app_b'][key])
key1 : 17
key2 : changed
key3 : unique

Sections attributes cannot be directly set to shadow config options. An
AttributeError is raised when an attempt is made to mutate the config.

>>> config['section_3.app_b'].key1 = 'fail'
Traceback (most recent call last):
 ...
AttributeError: Config options cannot be set directly.

Nor can new attributes be added to a section.

>>> config['section_3.app_b'].no_such_attribute = 'fail'
Traceback (most recent call last):
 ...
AttributeError: Config options cannot be set directly.

Validating configs

Config provides the validate() method to verify that the config is valid
according to the schema. The method returns True if the config is valid.

>>> config.validate()
True

When the config is not valid, a ConfigErrors is raised. The exception has an
errors property that contains a list of all the errors in the config.

Config overlays

A conf file may contain a meta section that is used by the config system. The
config data can access the config it extended using the extends property.
The object is just the config data; it does not have any config methods.

>>> print(config.extends.name)
shared.conf

>>> verifyObject(IConfigData, config.extends)
True

As Config supports inheritance through the extends key, each conf file
produces instance of ConfigData, called an overlay. ConfigData represents
the state of a config. The overlays property is a stack of ConfigData as
it was constructed from the schema’s config to the last config file that was
loaded.

>>> for config_data in config.overlays:
... print(config_data.name)
local.conf
shared.conf
base.conf
>>> verifyObject(IConfigData, config.overlays[-1])
True

Conf files can use the extends key to specify that it extends a schema
without incurring a processing penalty by loading the schema twice in a row.
The schema can never be the second item in the overlays stack.

>>> single_config = schema.load(schema.filename)
>>> for config_data in single_config.overlays:
... print(config_data.name)
base.conf
>>> single_config.push(schema.filename, raw_schema.decode('utf-8'))
>>> for config_data in single_config.overlays:
... print(config_data.name)
base.conf

push()

Raw config data can be merged with the config to create a new overlay for
testing. The push() method accepts a string of config data. The data
must conform to the schema. The section_1 sections’s keys are updated
when the unparsed data is pushed onto the config. Note that indented,
unparsed data is passed to push() in this example; push() does not
require tests to dedent the test data.

>>> for key in sorted(config['section_1']):
... print(key, ':', config['section_1'][key])
key1 : foo
key2 : sharing is fun
key3 : Launchpad rocks
key4 : Fc;k yeah!
key5 : local value

>>> test_data = ("""
... [section_1]
... key1: test1
... key5:""")
>>> config.push('test config', test_data)

>>> for key in sorted(config['section_1']):
... print(key, ':', config['section_1'][key])
key1 : test1
key2 : sharing is fun
key3 : Launchpad rocks
key4 : Fc;k yeah!
key5 :

Besides updating section keys, optional sections can be enabled too. The
section_3.app_a section is enabled with the default keys from the schema
in this example.

>>> config.schema['section_3.app_a'].optional
True
>>> 'section_3.app_a' in config
False

>>> app_a_data = "[section_3.app_a]"
>>> config.push('test app_a', app_a_data)

>>> 'section_3.app_a' in config
True
>>> for key in sorted(config['section_3.app_a']):
... print(key, ':', config['section_3.app_a'][key])
key1 : 17
key2 : 3.1415

>>> for key in sorted(config.schema['section_3.app_a']):
... print(key, ':', config.schema['section_3.app_a'][key])
key1 : 17
key2 : 3.1415

The config’s name and overlays are updated by push().

>>> print(config.name)
test app_a
>>> print(config.filename)
test app_a
>>> for config_data in config.overlays:
... print(config_data.name)
test app_a
test config
local.conf
shared.conf
base.conf

The test app_a config did not declare an extends key in a meta
section. Its extends property is None, even though it implicitly
extends test config. The extends property only provides access to
configs that are explicitly extended.

>>> print(config.extends.name)
test config

The config’s sections are updated with section_3.app_a too.

>>> for section in sorted(config, key=attrgetter('name')):
... print(section.name)
section-2.app-b
section-5
section_1
section_3.app_a
section_3.app_b
section_33

A config file may state that it extends its schema (to clearly connect the
config to the schema). The schema can also be pushed to reset the values in
the config to the schema’s default values.

>>> extender_conf_name = resource_filename(
... 'lazr.config.tests.testdata', 'extender.conf')
>>> extender_conf_data = ("""
... [meta]
... extends: base.conf""")
>>> config.push(extender_conf_name, extender_conf_data)
>>> for config_data in config.overlays:
... print(config_data.name)
extender.conf
base.conf
test app_a
test config
local.conf
shared.conf
base.conf

The section_1 section was restored to the schema’s default values.

>>> for key in sorted(config['section_1']):
... print(key, ':', config['section_1'][key])
key1 : foo
key2 : bar and baz
key3 : Launchpad rocks
key4 : Fc;k yeah!
key5 :

push() can also be used to extend master sections.

>>> sections = sorted(master_conf.getByCategory('bar'),
... key=attrgetter('name'))
>>> for section in sections:
... print(section.name, section.baz)
bar.master badger
bar.soup cougar

>>> master_conf.push('override', """
... [bar.two]
... baz: dolphin
... """)
>>> sections = sorted(master_conf.getByCategory('bar'),
... key=attrgetter('name'))
>>> for section in sections:
... print(section.name, section.baz)
bar.soup cougar
bar.two dolphin

>>> master_conf.push('overlord', """
... [bar.three]
... baz: emu
... """)
>>> sections = sorted(master_conf.getByCategory('bar'),
... key=attrgetter('name'))
>>> for section in sections:
... print(section.name, section.baz)
bar.soup cougar
bar.three emu
bar.two dolphin

push() works with master sections too.

>>> schema_file = StringIO("""\
... [thing.master]
... foo: 0
... bar: 0
... """)
>>> push_schema = ConfigSchema('schema.cfg', schema_file)

>>> config_file = StringIO("""\
... [thing.one]
... foo: 1
... """)
>>> push_config = push_schema.loadFile(config_file, 'config.cfg')
>>> print(push_config.thing.one.foo)
1
>>> print(push_config.thing.one.bar)
0

>>> push_config.push('test.cfg', """\
... [thing.one]
... bar: 2
... """)
>>> print(push_config.thing.one.foo)
1
>>> print(push_config.thing.one.bar)
2

pop()

ConfigData can be removed from the stack of overlays using the pop()
method. The methods returns the list of ConfigData that was removed – a
slice from the specified ConfigData to the top of the stack.

>>> overlays = config.pop('test config')
>>> for config_data in overlays:
... print(config_data.name)
extender.conf
base.conf
test app_a
test config

>>> for config_data in config.overlays:
... print(config_data.name)
local.conf
shared.conf
base.conf

The config’s state was restored to the ConfigData that is on top of the
overlay stack. Section section_3.app_a was removed completely. The keys
(key1 and key5) for section_1 were restored.

>>> for section in sorted(config, key=attrgetter('name')):
... print(section.name)
section-2.app-b
section-5
section_1
section_3.app_b
section_33

>>> for key in sorted(config['section_1']):
... print(key, ':', config['section_1'][key])
key1 : foo
key2 : sharing is fun
key3 : Launchpad rocks
key4 : Fc;k yeah!
key5 : local value

A Config must have at least one ConfigData in the overlays stack so that it
has data. The bottom ConfigData in the overlays was made from the schema’s
required sections. It cannot be removed by the pop() method.

If all but the bottom ConfigData is popped from overlays, the extends
property returns None.

>>> overlays = config.pop('shared.conf')
>>> print(config.extends)
None

Attribute access to config data

Config provides attribute-based access to its members. So long as the
section, category, and key names conform to Python identifier naming rules,
they can be accessed as attributes. The Python code will not compile, or will
cause a runtime error if the object being accessed has a bad name.

Sections appear to be attributes of the config.

>>> config = schema.load(local_conf)
>>> config.section_1 is config['section_1']
True

Accessing an unknown section, or a section whose name is not a valid Python
identifier will raise an AttributeError.

>>> config.section-5
Traceback (most recent call last):
 ...
AttributeError: No section or category named section.

Categories may be accessed as attributes too. The ICategory interface
provides access to its sections as members.

>>> from lazr.config.interfaces import ICategory
>>> config_category = config.section_3
>>> verifyObject(ICategory, config_category)
True
>>> config_category.app_b is config['section_3.app_b']
True

Like a config, a category will raise an AttributeError if it does not have a
section that matches the identifier name.

>>> config_category.no_such_section
Traceback (most recent call last):
 ...
AttributeError: No section named no_such_section.

Section keys can be accessed directly as members.

>>> print(config.section_1.key2)
sharing is fun
>>> print(config.section_3.app_b.key2)
changed

Accessing a non-existent section key as an attribute will raise an
AttributeError.

>>> config.section_1.non_key
Traceback (most recent call last):
 ...
AttributeError: No section key named non_key.

Implicit data typing

The ImplicitTypeSchema can create configs that support implicit datatypes.
The value of a Section key is automatically converted from str to the type
the value appears to be. Implicit typing does not add any validation support;
it adds type casting conveniences for the developer.

An ImplicitTypeSchema can be used to parse the same schema and conf files that
Schema uses.

>>> from lazr.config import ImplicitTypeSchema
>>> implicit_schema = ImplicitTypeSchema(base_conf)
>>> verifyObject(IConfigSchema, implicit_schema)
True

The config loaded by ImplicitTypeSchema is the same class with the same
sections as is made by Schema.

>>> implicit_config = implicit_schema.load(local_conf)
>>> implicit_config
<lazr.config...Config object at ...>
>>> config
<lazr.config...Config object at ...>

>>> sections = sorted(section.name for section in config)
>>> implicit_sections = sorted(
... section.name for section in implicit_config)
>>> implicit_sections == sections
True

>>> verifyObject(ISection, implicit_config['section_3.app_b'])
True

But the type of sections in the config support implicit typing.

>>> implicit_config['section_3.app_b']
<lazr.config...ImplicitTypeSection object at ...>

ImplicitTypeSection, in contrast to Section, converts values that appear to be
integer or boolean into ints and bools.

>>> config['section_3.app_b']['key1']
'17'
>>> implicit_config['section_3.app_b']['key1']
17

>>> config['section-2.app-b']['key1']
'True'
>>> implicit_config['section-2.app-b']['key1']
True

The value is also converted when it is accessed as an attribute.

>>> implicit_config.section_3.app_b.key1
17

>>> implicit_config['section-2.app-b'].key1
True

ImplicitTypeSection uses a private method that employs heuristic rules to
convert strings into simple types. It may return a str, bool, or int. When
the argument is the word ‘true’ or ‘false’ (in any case), a bool is returned.
Values like ‘yes’, ‘no’, ‘0’, and ‘1’ are not converted to bool.

>>> convert = implicit_config['section_1']._convert

>>> convert('false')
False
>>> convert('TRUE')
True
>>> convert('tRue')
True

>>> print(convert('yes'))
yes
>>> convert('1')
1
>>> print(convert('True or False'))
True or False

When the argument is the word none, None is returned. The token in
the config means the key has no value.

>>> print(convert('none'))
None
>>> print(convert('None'))
None
>>> print(convert('nonE'))
None

>>> print(convert('none today'))
none today
>>> print(convert('nonevident'))
nonevident

When the argument is an unbroken sequence of numbers, an int is returned. The
number may have a leading positive or negative. Octal and hex notation is not
supported.

>>> convert('0')
0
>>> convert('2001')
2001
>>> convert('-55')
-55
>>> convert('+404')
404
>>> convert('0100')
100

>>> print(convert('2001-01-01'))
2001-01-01
>>> print(convert('1000*60*5'))
1000*60*5
>>> print(convert('1000 * 60 * 5'))
1000 * 60 * 5
>>> print(convert('1,024'))
1,024
>>> print(convert('0.5'))
0.5
>>> print(convert('0x100'))
0x100

Multiline values are always strings, with white space (and line breaks)
removed from the beginning and end.

>>> print(convert("""multiline value 1
... multiline value 2"""))
multiline value 1
multiline value 2

Type conversion helpers

lazr.config provides a few helpers for doing explicit type conversion. These
functions have to be imported and called explicitly on the configuration
variable values.

Booleans

There is a helper for turning various strings into the boolean values True
and False.

>>> from lazr.config import as_boolean

True values include (case-insensitively): true, yes, 1, on, enabled, and
enable.

>>> for value in ('true', 'yes', 'on', 'enable', 'enabled', '1'):
... print(value, '->', as_boolean(value))
... print(value.upper(), '->', as_boolean(value.upper()))
true -> True
TRUE -> True
yes -> True
YES -> True
on -> True
ON -> True
enable -> True
ENABLE -> True
enabled -> True
ENABLED -> True
1 -> True
1 -> True

False values include (case-insensitively): false, no, 0, off, disabled, and
disable.

>>> for value in ('false', 'no', 'off', 'disable', 'disabled', '0'):
... print(value, '->', as_boolean(value))
... print(value.upper(), '->', as_boolean(value.upper()))
false -> False
FALSE -> False
no -> False
NO -> False
off -> False
OFF -> False
disable -> False
DISABLE -> False
disabled -> False
DISABLED -> False
0 -> False
0 -> False

Anything else is a error.

>>> as_boolean('cheese')
Traceback (most recent call last):
...
ValueError: Invalid boolean value: cheese

Host and port

There is a helper for converting from a host:port string to a 2-tuple of
(host, port).

>>> from lazr.config import as_host_port
>>> host, port = as_host_port('host:25')
>>> print(host, port)
host 25

The port string is optional, in which case, port 25 is the default (for
historical reasons).

>>> host, port = as_host_port('host')
>>> print(host, port)
host 25

The default port can be overridden.

>>> host, port = as_host_port('host', default_port=22)
>>> print(host, port)
host 22

The default port is ignored if it is given in the value.

>>> host, port = as_host_port('host:80', default_port=22)
>>> print(host, port)
host 80

The host name is also optional, as denoted by a leading colon. When omitted,
localhost is used.

>>> host, port = as_host_port(':80')
>>> print(host, port)
localhost 80

The default host name can be overridden though.

>>> host, port = as_host_port(':80', default_host='myhost')
>>> print(host, port)
myhost 80

The default host name is ignored if the value string contains it.

>>> host, port = as_host_port('yourhost:80', default_host='myhost')
>>> print(host, port)
yourhost 80

A ValueError occurs if the port number in the configuration value string is
not an integer.

>>> as_host_port(':foo')
Traceback (most recent call last):
...
ValueError: invalid literal for int...foo...

User and group

A helper is provided for turning a chown(1)-style user:group
specification into a 2-tuple of the user name and group name.

>>> from lazr.config import as_username_groupname

The value string must contain both a user name and group name, separated by a
colon, otherwise an exception is raised.

>>> as_username_groupname('foo')
Traceback (most recent call last):
...
ValueError: ...

When both are given, the strings are returned unchanged or validated.

>>> user, group = as_username_groupname('person:group')
>>> print(user, group)
person group

Numeric values can be given, but they are not converted into their symbolic
names.

>>> uid, gid = as_username_groupname('25:26')
>>> print(uid, gid)
25 26

By default the current user and group names are returned.

>>> import grp, os, pwd
>>> user, group = as_username_groupname()
>>> user == pwd.getpwuid(os.getuid()).pw_name
True
>>> group == grp.getgrgid(os.getgid()).gr_name
True

Time intervals

This converter accepts a range of time interval specifications, and returns
a Python timedelta [http://docs.python.org/3/library/datetime.html#timedelta-objects].

>>> from lazr.config import as_timedelta

The function converts from an integer to the equivalent number of seconds.

>>> as_timedelta('45s')
datetime.timedelta(...)
>>> print(as_timedelta('45s'))
0:00:45

The function also accepts suffixes m for minutes…

>>> print(as_timedelta('3m'))
0:03:00

…``h`` for hours…

>>> print(as_timedelta('2h'))
2:00:00

…and d for days…

>>> print(as_timedelta('4d'))
4 days, 0:00:00

…and w for weeks.

>>> print(as_timedelta('4w'))
28 days, 0:00:00

The function accepts a fractional number of seconds, indicating microseconds.

>>> print(as_timedelta('3.2s'))
0:00:03.200000

It also accepts any combination thereof.

>>> print(as_timedelta('3m22.5s'))
0:03:22.500000
>>> print(as_timedelta('4w2d9h3s'))
30 days, 9:00:03

But doesn’t accept “weird” or duplicate combinations.

>>> as_timedelta('3s2s')
Traceback (most recent call last):
...
ValueError
>>> as_timedelta('2.9s4w')
Traceback (most recent call last):
...
ValueError
>>> as_timedelta('m')
Traceback (most recent call last):
...
ValueError
>>> as_timedelta('3m2')
Traceback (most recent call last):
...
ValueError
>>> as_timedelta('45')
Traceback (most recent call last):
...
ValueError
>>> as_timedelta('45wm')
Traceback (most recent call last):
...
ValueError
>>> as_timedelta('45z')
Traceback (most recent call last):
...
ValueError

Log levels

It’s convenient to be able to use symbolic log level names when using
lazr.config to configure the Python logger.

>>> from lazr.config import as_log_level

Any symbolic log level value is valid to use, case insensitively.

>>> for value in ('critical', 'error', 'warning', 'info',
... 'debug', 'notset'):
... print(value, '->', as_log_level(value))
... print(value.upper(), '->', as_log_level(value.upper()))
critical -> 50
CRITICAL -> 50
error -> 40
ERROR -> 40
warning -> 30
WARNING -> 30
info -> 20
INFO -> 20
debug -> 10
DEBUG -> 10
notset -> 0
NOTSET -> 0

Non-log levels cannot be used here.

>>> as_log_level('cheese')
Traceback (most recent call last):
...
AttributeError: ...

Other Documents

	LAZR config

	Hacking on lazr.config
	Getting help

	Contributing

	News
	3.0 (2023-04-08)

	2.2.3 (2021-01-26)

	2.2.2 (2019-11-04)

	2.2.1 (2017-10-20)

	2.2 (2017-02-07)

	2.1 (2015-01-05)

	2.0.1 (2014-08-22)

	2.0 (2013-01-10)

	1.1.3 (2009-08-25)

	1.1.2 (2009-08-25)

	1.1.1 (2009-03-24)

	1.1 (2009-01-05)

	1.0 (2008-12-19)

Hacking on lazr.config

These are guidelines for hacking on the lazr.config project. But first,
please see the common hacking guidelines at:

http://dev.launchpad.net/Hacking

Getting help

If you find bugs in this package, you can report them here:

https://launchpad.net/lazr.config

If you want to discuss this package, join the team and mailing list here:

https://launchpad.net/~lazr-developers

or send a message to:

lazr-developers@lists.launchpad.net

Contributing

To run this project’s tests, use tox [https://tox.readthedocs.io/en/latest/].

To update the project’s documentation [https://lazrconfig.readthedocs.io/en/latest/] you need to trigger a manual
build on the project’s dashboard on https://readthedocs.org.

NEWS for lazr.config

3.0 (2023-04-08)

	Add basic pre-commit configuration.

	Publish Documentation on Read the Docs.

	Apply inclusive naming via the woke pre-commit hook.

	Test using zope.testrunner rather than nose.

	Officially add support for Python 3.9, 3.10 and 3.11.

	Drop support for Python 2.6, 2.7, and 3.4.

	Apply black and isort.

2.2.3 (2021-01-26)

	Fix tests with zope.interface >= 5.0.0.

	Fix deprecation warning on Python >= 3.2. (LP: #1870199)

2.2.2 (2019-11-04)

	Officially add support for Python 3.7 and 3.8. The test suite required
some changes since the repr of datetime.timedelta objects changed in
3.7.

2.2.1 (2017-10-20)

	Adjust versioning strategy to avoid importing pkg_resources, which is slow
in large environments.

2.2 (2017-02-07)

	Fix tox import failure related to https://github.com/tox-dev/tox/issues/453
(LP: #1662701)

	Don’t catch ImportErrors that might occur when importing lazr.config._config
from lazr/config/__init__.py. It’s unnecessary and masks legitimate
ImportErrors of e.g. lazr.delegates.

	setup.py: nose is not an install_requires, so move this dependency to
tox.ini. (LP: #1649726)

	tox.ini: Add the py36 environment and drop py32, py33. Ignore missing
interpreters. Change to a temporary directory when running tox (to avoid
the above tox bug). Invoke nose via -m instead of the mostly deprecated
python setup.py approach.

2.1 (2015-01-05)

	Always use old-style namespace package registration in lazr/__init__.py
since the mere presence of this file subverts PEP 420 style namespace
packages. (LP: #1407816)

	For behavioral compatibility between Python 2 and 3, strict=False must be
passed to the underlying RawConfigParser under Python 3. (LP: #1397779)

2.0.1 (2014-08-22)

	Drop the use of distribute in favor of setuptools. (LP: #1359926)

	Run the test suite with tox.

2.0 (2013-01-10)

	Ported to Python 3.

	Now more strict in its requirement of ASCII in config files.

	Category names are now sorted by default.

1.1.3 (2009-08-25)

	Fixed a build problem.

1.1.2 (2009-08-25)

	Got rid of a sys.path hack.

1.1.1 (2009-03-24)

	License clarification: only v3 of the LGPL is offered at this time, not
subsequent versions.

	Build is updated to support Sphinx docs and other small changes.

1.1 (2009-01-05)

	Support for adding arbitrary sections in a configuration file, based on a
.master section in the schema. The .master section allows admins to define
configurations for an arbitrary number of processes. If the schema defines
.master sections, then the conf file can contain sections that extend the
.master section. These are like categories with templates except that the
section names extending .master need not be named in the schema file.
[Bug 310619]

	ConfigSchema now provides an interface for constructing the schema from a
string. [Bug 309859]

	Added as_boolean() and as_log_level() type converters. [Bug 310782]

	getByCategory() accepts a default argument. If the category is missing, the
default argument is returned. If the category is missing and no default
argument is given, a NoCategoryError is raised, as before. [Bug 309988]

1.0 (2008-12-19)

	Initial release

Index

 nav.xhtml

 Table of Contents

 		
 LAZR config

 		
 Hacking on lazr.config

 		
 Getting help

 		
 Contributing

 		
 News

 		
 3.0 (2023-04-08)

 		
 2.2.3 (2021-01-26)

 		
 2.2.2 (2019-11-04)

 		
 2.2.1 (2017-10-20)

 		
 2.2 (2017-02-07)

 		
 2.1 (2015-01-05)

 		
 2.0.1 (2014-08-22)

 		
 2.0 (2013-01-10)

 		
 1.1.3 (2009-08-25)

 		
 1.1.2 (2009-08-25)

 		
 1.1.1 (2009-03-24)

 		
 1.1 (2009-01-05)

 		
 1.0 (2008-12-19)

_static/minus.png

_static/plus.png

_static/file.png

